
Optimized register renaming scheme for stack-based
x86 operations

Xuehai Qian, He Huang, Zhenzhong Duan, Junchao Zhang, Nan Yuan,

Yongbin Zhou, Hao Zhang, Huimin Cui, Dongrui Fan

Key Laboratory of Computer System and Architecture
Institute of Computing Technology

 Chinese Academy of Sciences
{qianxh,huangh, duanzhenzhong,jczhang,

yuannan,ybzhou,zhanghao,cuihm,fandr}@ict.ac.cn

Abstract. The stack-based floating point unit (FPU) in the x86 architecture
limits its floating point (FP) performance. The flat register file can improve FP
performance but affect x86 compatibility. This paper presents an optimized
two-phase floating point register renaming scheme used in implementing an
x86-compliant processor. The two-phase renaming scheme eliminates the
implicit dependencies between the consecutive FP instructions and redundant
operations. As two applications of the method, the techniques used in the
second phase of the scheme can eliminate redundant loads and reduce the
mis-speculation ratio of the load-store queue. Moreover, the performance of a
binary translation system that translates instructions in x86 to MIPS-like ISA
can also be boosted by adding the related architectural supports in this
optimized scheme to the architecture.

1. Introduction

X86 is the most popular ISA and has become the de facto standard in microprocessor
industry. However, the stack-based floating point ISA has long been considered as a
weakness of the x86 in compare with the competing RISC ISAs. The addressing of FP
stack register is related to a Top-Of-Stack (TOS) pointer. Every x86 FP instruction
has implicit effects on the status of the floating point stack, including the TOS pointer
and incurs implicit dependencies between consecutive floating point instructions.
Furthermore, the stack-based architecture requires one of the operands of an FP
instruction comes from the top of the stack, so some transfer or swap operations are
needed before real computations.

The AMD x86 64-bit processor attacks the above problems by using a flat register
file. It uses SSE2 to replace the stack-based ISA with a choice of either IEEE 32-bit
or 64-bit floating point computing precision. However, even the 64-bit mode can not
obtain the totally same results as the original double extended FP computing
precision. Another fact is that a lot of legacy libraries are written in highly optimized
floating point assembly; rewriting of these libraries takes a long time. Therefore, the

replacement of the stack-based ISA is not easy. We should seek for novel techniques
to bridge the FP performance gap between x86 and RISC architecture.

This paper first presents a comprehensive and solid methodology of implementing
x86-compliant processor based on a generic RISC superscalar core. The techniques to
handle x86-specific features such as, complex instruction decoding, Self Modified
Code (SMC), non-aligned memory access are outlined. After giving a motivating
example, we emphasize on the key elements of our methodology, 2-phase register
renaming scheme for attacking the stack-based FP operations. The first phase of the
renaming scheme eliminates the implicit dependencies imposed to the consecutive FP
instructions by maintaining speculative stack-related information in the instruction
decode module. The second phase eliminates almost all of the redundant operations
by value “short-circuiting” in rename table, which actually achieves the effect of a flat
register file. Critical issues in processor design such as branch misprediction and
exception handling are carefully considered.

The scheme has two applications. First it can be used to reduce the mis-speculation
ratio of loads in implementing POP instructions in x86 ISA. The results of stores may
be directly “short-circuited” to the loads in the renaming module in some cases, so
that the redundant loads are eliminated and will not incur mis-speculations in the
load-store queue. Secondly, the generic RISC core that originally supports x86 ISA
by binary translation can be augmented with the 2-phase renaming scheme, so that the
performance of the translated code is boosted. The codes generated by the original
binary translation system have a poor performance for FP programs due to the
significant semantic gap between the RISC and x86 FP ISA.

The rest of the paper is organized as follows. The design methodology of the
prototype processor architecture is presented in section 2. Section 3 provides an
example which motivates our optimized scheme. Details about the proposed scheme
are presented in section 4. Section 5 briefly summarizes the two applications of the
scheme. Section 6 describes the simulation environment and methodology. The
simulation results are presented in section 7. The related work is outlined in section 8.
We conclude the paper in section 9.

2.Overview of the GodsonX architecture

Fig. 1 shows the architecture of the proposed prototype x86 processor GodsonX
which is built based on the core of Godson-2C[1] core, a typical RISC 4-issue
out-of-order superscalar. The architectural supports for x86 architecture are presented
as shaded blocks.

The front end of x86 processor is much more complex than the RISC processor. It
is organized in 5 pipeline stages. The first stage generates instruction addresses. The
second stage is composed of five modules providing the content of instructions,
pre-decode information and performing branch prediction. The third stage, decode-0,
consists of four sub-modules and is responsible for instruction alignment and queue
management. The decode-1 module reads the aligned x86 instructions from the first
instruction register (IR1 in the figure), translates them into the “RISC style”
intermediate instructions and some micro-ops, and puts them in the second instruction

Fig. 1. GodsonX architecture

register (IR2 in the figure). The decode-2 module generates sequences of micro-ops
and put the sequences in the micro-op queue (uop in the figure). The methods that
decode-2 uses to generate micro-op sequences include: short micro-op sequence
Decoder (SD), Long micro-op sequence Decoder (LD), Memory access Mode
decoder (MD) and micro-op Rom (urom). The uop queue acts as a buffer between
decode-2 and the register rename module inside the RISC core, enabling stable
instruction issue from the front end.

The architectural supports to the FP stack are distributed. These modules work
cooperatively to guarantee the correct stack status while ensuring efficient execution
of floating point instruction. The decode-1 module maintains a local copy of TOS and
Tag, and has a table storing the x86 FP instruction information. Each micro-op should
carry the TOS after dispatched from the register renaming stage. The reorder queue
(ROQ) handles FP exceptions specified in x86 ISA. The branch queue (BRQ) keeps
the local TOS and Tag of the branch instruction for misprediction handling. The
floating point data type (Tag) of the result value is computed in FALU1/2, and passed
to ROQ in write back stage. When a floating point instruction commits, ROQ writes
the TOS and Tag into the architectural FP status and tag word. Under exceptions, the
decode-1 module recovers the TOS and Tag from these registers.

We tried to handle some burdensome x86 ISA features, such as Self Modified
Code (SMC) and non-aligned memory accesses, etc. by architectural modifications or
supports. The method to handle SMC is in the granularity of cache line, so it has the
advantage over the method adopted by Intel, which detects and handles the event in
the granularity of page. Specifically, we added a Simplified Victim Cache (SVIC) to
the decode module. As a store writes back, we use the address to look up the ICache
and SVIC, if an entry is found, then an SMC occurs, then the pipeline need to be
flushed. Similarly, the miss queue is also looked up as a store writes back. When the
ICache misses, it is also needed to look up the data in the DCache, while sending the

request to miss queue, trying to find the data in memory. Similarly, it is also
necessary to look up the data in the store queue when ICache misses, since store
queue serves as a buffer between pipeline and DCache. In our processor, the L2 and
L1 cache are exclusive. If a missed L1 access hits a dirty line in L2 cache, L2 cache
should also write the line back to memory, otherwise the data will be lost. As an
optimization, we modified the former memory access architecture in our processor
and proposed an efficient way to execute non-aligned memory accesses in x86. In the
new architecture, the LSQ(LD/ST Queue) is placed in the position before the DCache
and DTLB accesses. In this way, the latency in cache tag compare stage is reduced,
since the load and store dependencies are only needed to be checked when the
loads/stores are issued from the LSQ. We also leverage this architecture to execute
non-aligned memory access efficiently, this kind of operations are split into two
operations after it goes through the LSQ, and the first access can be interleaved with
the address calculation of the second one. The 80-bit memory accesses in FP
instructions can be handled in a similar way. Moreover, we found that segment
register is usually not changed as x86 program executes, so we can speculate on its
value, which makes the address calculation simpler. The performance of memory
access module can also be optimized by making the common operations run faster,
which reduces the hardware cost. We found that in 2 issue memory access pipeline,
one-port TLB is enough in the common case. The MDP in register renaming module
is a simple Memory Distance Predictor, which can reduce the possibility that the
pipeline flush due to load/store conflicts.

3. Motivating Example

A floating point computation example is presented in this section, showing the
advantages of the optimized scheme. Consider the computation: atan((a+b)/(a*c)), a
possible x86 instruction sequence and two possible corresponding micro-op
sequences are given below.
X86 instructions naïve micro-op sequence optimized sequence
FADD ST(1);
FXCH ST(4);
FMULP ST(1),ST(0);
FLD ST(3);
FPATAN;

fadd fr(5), fr(5), fr(6)
fmov fr(9), fr(5)
fmov fr(5), fr(1)
fmov fr(1), fr(9)
fmul fr(6), fr(6),fr(5)
fmov fr(5), fr(1)
fpatan fr(5), fr(5), fr(6)

fadd fr(5), fr(5), fr(6)
fxch fr(5), fr(1)
fmul fr(6), fr(6), fr(5)
fmov fr(5), fr(1)
fpatan fr(5), fr(5), fr(6)

 Fig. 2 shows the change of FP stack status when the instructions are executed.
We assume the left-most the initial state, where TOS is 5. The FXCH instruction
swaps the content of ST(4) and ST(0). The suffix “P” in the multiplication instruction
implies that a “pop” operation is required. The “pop” increases the TOS and empties
the former top element. The last instruction computes the arc-tangent function of
(ST(0)/ST(1)), the source operands position are fixed, so there is no need to specify
them in instruction. It reflects a feature of stack-based architecture. Also, the
FPATAN instruction includes a “pop” operation.

Fig. 2. Stack operations of the x86 instructions

We use four FP register number address spaces. FP registers used in FP
instructions are called relative FP stack registers (ST(i), i∈[0,7]), the relative FP
registers are mapped to absolute FP stack registers (st(i), i∈[0,7]) by adding ST(i)
to TOS (module 8). The FP registers used in micro-op are FP logical registers (fr(i), i
∈[0,15]). The FP registers after renaming in the RISC core are FP physical registers
(pr(i), i∈[0,63]). st(0)-st(7) are directly mapped to fr(0)-fr(7). Temporary registers
are used to hold intermediate results. The micro-op sequences can use up to 8
temporary FP registers which are fr(8)-fr(15). In the naïve sequence, we use three
transfer operations (“fmov”) to implement FXCH. In the optimized scheme, a
dedicated swap operation (“fxch”) is used.

 Table 1 and table 2 show the execution and register mapping processes of the two
micro-op sequences. We find that the number of micro-ops that would go into the
issue queue is 7 in the naïve sequence and 3 in the optimized sequence; while the
numbers of physical registers consumed are 10 and 6, respectively. Both the
micro-ops and the mapped physical registers are reduced. Due to the nature of
stack-based architecture, there are inherently a large amount of FXCH instructions in
x86 FP program. Reducing the number of this kind of operations can directly reduce
the execution time of the program. Moreover, it will alleviate the burden to the
physical register file and issue queue, which makes other operations execute faster as
well.

In the next section, we will present our novel 2-phase renaming scheme. The first
phase of renaming releases the serial requirement in decoding x86 FP instructions via
speculative local copy of certain floating point information in decode-1 module. The
second phase adopts an optimized RAM-based approach, which can support the
optimization.

Table 1. Register mapping and execution of the naive micro-op sequence

Map-Table orig. inst renamed inst mapping executed ops
fr1->pr1,fr5->pr5,
fr6->pr6

fadd
fr5,fr5,fr6

fmul pr9,pr5,pr6 fr5->pr9 (pr5+pr6)->pr9

fr1->pr1,fr5->pr9,
fr6->pr6

fmov fr9,fr5,
fmov fr5,fr1
fmov fr1,fr9

fmov pr10,pr9
fmov pr11,pr1
fmov pr12, pr10

fr9->pr10
fr5->pr11
fr1->pr12

pr9->pr10
pr1->pr11
pr10->pr12

fr1->pr12, fr5->pr11,
fr9->pr10, fr6->pr6

fmul
fr6,fr6,fr5

fmul pr13, pr6,
pr11

fr6->pr13 (pr11*pr6)->pr13

fr1->pr12, fr5->pr11,
fr9->pr10, fr6->pr13

fmov fr5,fr1 fmov pr14, pr12 fr5->pr14 pr12->pr14

fr1->pr12, fr5->pr14,
fr9->pr10, fr6->pr13

fpatan
fr5, fr5, fr6

fpatan
pr15, pr14, pr13

fr5->pr15 atan(pr13/pr14)
->pr15

Table 2. Register mapping and execution of the optimized micro-op sequence

Map-Table orig. inst renamed inst mapping executed ops
fr1->pr1,fr5->pr5,
fr6->pr6

fadd fr5,fr5,fr6 fmul pr9,pr5,pr6 fr5->pr9 (pr5+pr6)->pr9

fr1->pr1,fr5->pr9,
fr6->pr6

fxch fr5, fr1 eliminated fr5->pr1
fr1->pr9

Swap the FP physical
register that fr5 and
fr1 mapped

fr1->pr9, fr5->pr1,
fr6->pr6

fmul
fr6,fr6,fr5

fmul pr10, pr6, pr1 fr6->pr10 (pr1*pr6)->pr10

fr1->pr9, fr5->pr1,
fr6->pr10

fmov fr5,fr1 eliminated fr5->pr9 Make fr5 map to the
physical register that
fr1 mapped to, it is
pr9

fr1->pr9, fr5->pr9,
fr6->pr10

fpatan
fr5, fr5, fr6

fpatan
pr11, pr9, pr10

fr5->pr11 atan(pr10/pr9)
->pr11

4. Optimized 2-phase register renaming scheme

4.1 Mapping from stack registers to logical registers

In the first phase mapping, the FP stack registers are mapped to FP logical registers.
We adopt a speculative decoding technique in this process. The decode-1 module
maintains a local copy of partial TAG and TOS. The TAG is partial since it just
indicates if a FP register is empty. The decode stage determines the absolute FP
register based on the local TOS and update these information after each FP instruction
is decoded, according to the specifications of each FP instruction. In this way, the
decoding of FP instructions can be pipelined, since the decode module does not have
to wait for the committed TOP and TAG information. Here we should note that the
effects of each FP instruction on the stack are totally predictable.

If no exceptions, the local TOS and Tag is synchronized with the architectural TOS
and Tag in the FP status and tag word when the instruction commits. In case of
exceptions, the changes to the local TOS and Tag at the decode stage have to be
recoverd to the architectural state. We explain the branch misprediction case by an
example.. Fig. 3(a) presents a branch misprediction scenario. The nodes 1 and 2
represent the committed instructions, the nodes 3 and 4 represent the instructions
executed in the correct path but not committed, node 4 is the branch instruction, and
nodes 5-7 are the instructions in the wrong path, executed and need to be cancelled.
From this scenario, if the TOS and Tag are recovered from the FP status word and the
Tag word, the decode stage will hold TOS and Tag information of the last instruction
committed before the branch, that is node 2. But this is incorrect, since what we need
is the TOS and Tag after the execution of the branch instruction, the node 4.
Therefore we need to keep the TOS and Tag of each branch instruction in the BRQ
shown in Fig. 1. When a branch misprediction occurs, the decode stage recover the
TOS and Tag from BRQ.

The partial TAG information can be used in the detection of stack
overflow/underflow. An FP stack underflow occurs when an instruction references an

(a) (b)

Fig. 3. (a) branch misprediction scenario. (b) An example: detection of FP “stack underflow”

empty FP stack register, a stack overflow occurs when an instruction loads data into a
non-empty FP stack register. Fig. 3(b) shows an example of detecting FP stack
underflow conditions. The partial TAG is the 8-bit vector at the bottom; “0” indicates
the related position in FP stack is empty, “1” means the position is non-empty.

The Floating Point Instruction Table (FPIT) is used as an effective and low cost
way to maintain the information of each FP instruction in decode module. After
analyzing the bit codes of each instruction, we found certain group of instructions has
similar bit codes and similar effects to the stack. We can represent information for
these FP instructions by just one entry in FPIT. This technique makes the table
smaller. In each entry, we store the effects to the stack. More details about this table
are out of the scope of the paper.

4.2 Optimized register mapping in the RISC core

There are two ways to implement the register renaming, the RAM-based design and
CAM-based design, they use separate or merged architectural and rename register
files. The former design of Godson-2C processor adopts the CAM approach, which
can not support the optimization in the paper. We propose a new RAM-based register
renaming design. This design allows one physical register to be mapped to more than
one logical registers. Fig. 4 gives the outline of this architecture.

We use three mapping tables to maintain the relationship between FP logical
registers and physical registers. The Floating point Logical Register Mapping Table
(FLRMT) is used to rename logical registers to physical registers. It has 16 entries
representing 16 floating point logical registers. The field “pname” indicates which
physical register the logical register is mapped to. Each FLRMT entry contains 8
lastvalid items, corresponding to 8 BRQ entries. The lastvalid(i) keeps the mapped
physical register number when the branch instruction in BRQ(i) is mapped. The
Floating point Physical Register Mapping Table (FPRMT) merely maintains the state
of each physical register. It has 64 entries corresponding to 64 physical registers.
There three fields in each entry. The state records the state of the physical register,
brqid is used in branch misprediction to recover the correct register mapping, and
counter indicates how many logical registers are mapped to this physical register.
When the register renaming stage finds an entering instruction an “fmov”, it directly
maps the destination register to the physical register of the source register, and
increases the counter for the physical register. When “fxch” is encountered, the source

Fig. 4. optimized register renaming inside RISC core

and destination registers are simply swapped. When an instruction committed, the
counter for the destination physical register is decreased. We need four bits for the
counter field, since at most 16 logical registers can be mapped into a physical register.
Note that the change of mapping between logical and physical registers at the register
renaming stage by fmov or FXCH is speculative; the instructions can be canceled
later because of exception. The Floating point Architectural Mapping Table
(FARMT) records the committed physical register which the logical register is
mapped to, it is used in exception recovery. This table has 16 entries corresponding to
16 logical registers. Each entry just records the physical register that the logical
register mapped to. The table is updated when an instruction is committed. When an
exception is encountered, the renaming stage can recover the mapping relationship
from FARMT. This optimized architecture simplifies lookup logic compared with the
CAM-based implementation and is more scalable.

TAG update should also be considered in the optimization. When an instruction
committed, the tag for the destination register should be updated, reflecting the latest
status. In our design, the tag is computed in FALU, but the eliminated “fxch” and
“fmov” will not enter FALU. This is not a problem for “fxch”, since its two operands
are both architectural visible registers, so the only thing to do as an instruction
commits is to swap the tags for the two operands in the FP tag word. For “fmov”, it is
more difficult because the source operand may be a temporary register. To make the
design simple, the optimization is not applied to the special case. As the statistics data
shows, the special case is rare.

5. Applications of the renaming scheme

The proposed scheme has two applications. First, it can be used as the supports for the
Godson-2C processor that implements MIPS-like ISA and runs application-level
binary translator to support x86 applications. The binary translator that we conducted
the experiments is Digital Bridge[6]. It works in a Godson based LINUX server, and
translates the elf file of x86 ISA to Godson ISA (MIPS-like). Although the translator
works well for fix point programs the performance of floating point applications
suffers. It is mainly due to the remarkable ISA semantic difference between x86 and
general propose RISC in floating point specification. The existing method on binary
translation is not efficient enough to bridge such a gap, architectural supports are
needed to narrow the gap. Without architectural supports, the Bridge translator use

static FP registers in Godson processor to emulate FP stack operations. When loading
data into the FP stack register, for example, ST(2), we must dynamically determine
the corresponding absolute register and put the value in fr(2). The process will incur a
lot of swap operations in the target Godson code. This approach still needs the help of
memory. The valid values on the stack should be loaded from and stored into memory
at the beginning and the end of each basic block. Finally, this approach assumes that
the TOS is the same and TAGs are all valid at entry of each basic block. Only under
this assumption, ST(i) can always correspond to fr(i), regardless of the preceding path
from which the code arrives the entry. But a large amount of extra code must be
added at the head of the translated code for each block to judge if the above
speculation is held. From the experiment results, the condition is satisfied almost all
the time. It is obviously a waste to execute a large segment of extra code for rare
conditions. We add our architectural support for FP stack to Godson-2C processor
without x86 features. With these supports, we can directly use the relative FP registers
in the translated code, making the burden of maintaining status of FP stack to
hardware.

As the second application of the method, it can also used to eliminate redundant
loads. An impediment to Godson-X performance is the high miss rate of load
speculation. After analyzing the program execution behavior, we found that the
problem came from the x86 PUSH and POP instructions for parameter passing in
function calls. These two instructions are mapped to store and load micro-ops. In a
function call, the store and load come in pair and close to each other. Godson-X
always speculates on the value of the load before the store commits. Therefore when
the store commits, mis-speculation occurs. We added a 4-entry table to the register
renaming module to forward the store value to the loads. The table maintains the
source register numbers and memory addressing information of the 4 most recent
store instructions. If a load instruction’s memory address matches to one of the
entries, it can be eliminated by modifying the register mapping relationship to directly
get the stored value. Moreover, we are trying to extend this technique to eliminate
redundancy in control flow with some hardware support. It is out of the scope of this
paper.

6. Experimental Infrastructure

We have developed a cycle accurate full-system simulator for x86-compliants. Unlike
the Simplescalar-based performance simulators, which decouple the execution and
timing logic and can only provide an estimation of the performance, our simulator
models the exact signals and timing except inside the ALU/FALU. This makes the
result more accurate. Table 3 shows the detailed configuration of the simulator. For
the latency of FP operations, we make following assumptions on latency: absolute,
negation, comparison and branch take two cycles; addition, subtraction and
conversion take three cycles; multiplication takes four cycles; division and square root
take 4 to 16 cycles to complete; and transcendental functions take 60 cycles to
complete. The real computation is carried out by a modified library of standard FP
software implementation, the main modifications are FP exception handling.

Table 3. Configuration of GodsonX processor

decode width at most 2 x86 instructions each cycle
functional units 2 fix point ALU, 2 floating point ALU, 1 memory
ROQ 32 entries
BRQ 8 entries
fix issue queue 16 entries
float issue queue 16 entries
branch predictor Gshare: 9-bit ghr, 4096-entry pht, 128-entry BTB,direct mapped
L1-ICACHE 64KB 4-way set associative
L1-DCACHE 64KB 4-way set associative
memory access latency 50 cycles for the first sub block, 2 cycles for consecutive sub

blocks
We use X86 emulator Bochs[9], which can boot LINUX and Window XP, as a

reference in validating our design. Every time an instruction is committed, the whole
architectural state is compared with Bochs. Due to this method, we debugged and
validated our design. Finally, our simulator can boot the LINUX and Window XP.

SPEC CPU2000 is used as our benchmark. First, we find the representative region
of each program by a SimPoint-like performance simulator for GodsonX processor,
which is built from the counterpart for Godson-2C processor[5]. We fast-forward each
program to its representative region and run 1 billion cycles using the cycle-accurate
simulator to get precise results.

7. Simulation results and Discussion

7.1 Performance and characteristics of x86 programs

Fig. 5(a) presents the performance comparison between our processor and the 2.4
GHz Intel Celeron processor. The IPC of the latter is obtained as follows. We first run
each program in Bochs and record the instruction count, them we execute it in a real
Celeron machine, record the execution time. We compute the IPC of each program
and then compare it with the IPC of representative region in GodsonX. For some
programs such as wupwise, swim, facerec and swim, performance of GodsonX is
much better than that of Celeron, for programs like applu, equake, ammp and apsi,
performances are similar. However, for some programs, especially sixtrack,
GodsonX’s performance is worse. Fig. 5(b) shows the latency distribution of
micro-ops in GodsonX, the height of each bar represents the absolute number of
cycles from map to commit. We can see that most of the cycles are due to register
mapping or waiting for commit. This indicates that a large physical register file or
reorder buffer is needed. Fig. 5(c) shows the cycle distribution with respect to the
number of micro-ops committed in a cycle. For every program more than one
micro-op is committed each cycle on average, especially for ammp, in most of the
time four micro-ops are committed each cycle. It indicates that the efficiency of
GodsonX is quite good. Fig. 5(d) presents the average number of micro-ops per x86
instruction, which indicates the quality of our micro-op mapping. On average about 2
are needed to implement an x86 instruction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

wu
pw
is
e

sw
im

mg
ri
d

ap
pl
u
me
sa

ga
lg
el ar

t

eq
ua
ke

fa
ce
re
c

am
mp

lu
ca
s

fm
a3
d

si
xt
ra
ck

ap
si

godsonx celeron

0

10

20

30

40

50

60

wu
pw
is
e
sw
im

mg
ri
d

ap
pl
u
me
sa

ga
lg
el ar

t

eq
ua
ke

fa
ce
re
c
am
mp

lu
ca
s

fm
a3
d

si
xt
ra
ck

ap
si

map to issue issue to wtbk wtbk to commit
 (a) (b)

0%

20%

40%

60%

80%

100%

wu
pw
is
e

sw
im

mg
ri
d

ap
pl
u

me
sa

ga
lg
el

ar
t

eq
ua
ke

fa
ce
re
c

am
mp

lu
ca
s

fm
a3
d

si
xt
ra
ck

ap
si

1 uop committed 2 uops committed

3 uops committed 4 uops committed

0

0.5

1

1.5

2

2.5

3

3.5

wu
pw
is
e
sw
im

mg
ri
d

ap
pl
u
me
sa

ga
lg
el ar

t

eq
ua
ke

fa
ce
re
c
am
mp

lu
ca
s

fm
a3
d

si
xt
ra
ck

ap
si

av
g.

 (c) (d)

Fig. 5. Execution results of x86 program on our processor

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

apsi.non-opt apsi.opt

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

lucas.non-opt lucas.opt
 (a) (b)

Fig. 6. Comparisons of register renaming

0%

5%

10%

15%

20%

25%

30%

35%

wu
pw

is
e

sw
im

mg
ri

d

ap
pl

u

me
sa

ga
lg

el ar
t

eq
ua

ke
fa

ce
re

c

am
mp

lu
ca

s

fm
a3

d
si

xt
ra

ck

ap
si

IPC_inc
 (a) (b)

Fig. 7. IPC increase and the ratio of eliminated operations

0%

20%

40%

60%

80%

100%

120%

140%

wu
pw
is
e

sw
im

mg
ri
d

ap
pl
u

me
sa

ga
lg
el ar

t

eq
ua
ke

fa
ce
re
c

am
mp

lu
ca
s

fm
a3
d

si
xt
ra
ck

ap
si

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

GCC equake gzip mgrid twolf
 (a) (b)

Fig. 8. Effects on the binary translation system and the ratio of eliminated mis-speculation

7.2 Effects of the optimized scheme

Fig. 6 shows the effect of the optimization in mitigating the burden to register
renaming. The information is indicated by the percentage of total execution time
during which certain number of renaming table entries are occupied. We find that
after optimization, the curves shift left. This means that fewer entries are used in
certain percentage of time. Fig. 7(a) shows the improvement to IPC. We can see that
both apsi and lucas get a big IPC increase, as high as 30%. This observation is
consistent with the optimization effect on usage of the renaming table shown in Fig.6.
Fig. 7(b) shows the number of “fmov” before and after the optimization. The
elimination of “fmov” comes from two sources. First, the “fmov” for FXCH are
completely eliminated by simply swapping the source and destination registers
mappings. Secondly, a large portion of other “fmov” resulted from FLD or FST are
eliminated by the register renaming module. We can see that more than 10% of
micro-ops are removed on average. In Figure 8, we show the impacts of the
application of technique. From (a) we can see the performance of the binary
translation system boosts significantly; this is due to the augmented architecture on
which the code generated by the binary translation executes. In this architecture,
certain features of the floating point stack are incorporated, so that the binary
translation system can easily generate simple and efficient code for the x86 FP
application. In (b), the ratio of the eliminated load mis-speculations are presented, the
mis-speculation is frequently in SPEC2000 Integer programs, so we show the ratios
for several integer programs.

7.3 Hardware costs comparison

This section we show two alternative implementations of the register renaming
module. One is the design proposed in this paper, the other is the register renaming
module in Godson-2C. The results in Table 4 are derived from Synopsys Design
Compiler with 0.13um standard cell library for TSMC. We can see from the
comparison that the critical path of the optimized scheme is slightly longer than the

Table 4. Hardware cost comparison

 Lat. (ns) Area(um2)
GodsonX 1.25 616841.937500
Godson-2C 1.23 981161.687500
design of Godson-2C, but the area comsumed by the GodsonX register renaming
module is greatly reduced. The main reason to the decrease is in the Godson-2C
design, a large combinational logic is used to generate a table that maps the logical
registers to physical registers, this part of logic consumes a lot of area. Although the
proposed scheme has a longer critical path than that of Godson-2C, the RAM-based
design apporach has better scalability. When the number of physical registers
increases, the proposed scheme will show more advantages over the former design.

8. Related work

The implementation of FP stack is a critical issue in x86-compliant processor design.
Some mechanisms have been patented by Intel[4] and AMD[3], but they are different
from the scheme proposed in this paper. The main distinctions are that they normally
adopt multiple tables to hold the stack related information, and the structures to hold
the information are distributed in the processor. The synchronizations under
exceptions and branch mis-predictions are much more complicated. The modification
to the RISC core in our scheme is trivial and the handling of exceptions or
mis-predictions is easy to understand and implement. More important is that we
present an applicable methodology of implementing the FP stack based on a generic
RISC core efficiently.

The elimination of FXCH has been used in some x86 processor, but it can only be
done when FXCH comes with certain types of instructions, in those conditions, it can
be combined with the surrounding instructions and eliminated. Both Intel and AMD
employ a dedicated unit to execute FXCH instruction. Our scheme is more general
and has lower cost. We only incorporate some simple functions in register renaming
stage to detect the optimization opportunities. As in our scheme, not all FXCH in Intel
or AMD processors can be eliminated. For example, under stack error (stack overflow
or underflow), AMD processor will generate 5 micro-ops for the FXCH instruction.
Moreover, from P4 processors this operation will have 3-cycle execution time again.
Due to the elegant style of eliminating such operations in our scheme, the
optimization will exist continually in our processor.

Our attempt is the first effort to implement a full x86-compliant processor based on
a typical RISC core. The methodology presented in this paper can be applied to build
processor in different ISAs. We also provide some x86 program characteristics and
behaviors on our processor. IA-32 execution layer[7] and transmeta morphing
software[8] are two efforts to translate x86 programs to other ISAs. Software based
approaches are adopted in these systems, and the underlying architectures are VLIW,
while our methodology is based on hardware architectural support to an existing and
more general superscalar architecture. It is also the first work to investigate the impact
of architectural support to binary translation.

9. Conclusion

This paper presents an optimized floating point register renaming scheme for stack
based operations used in building an x86-compliant prototype processor. We
compared the hardware cost of two register renaming designs; the proposed scheme
has a slightly longer critical path but greatly reduced area. We find a large amount of
swap and data transfer instructions in FP programs, and most of them can be
eliminated by our proposed scheme. The IPC improvements due to the optimization
are as high as 30% for some programs, and near 10% on average. Similar techniques
in the scheme can also be extended to eliminate redundant loads and used as the
architectural supports for RISC superscalar core to boost the performance of the
binary translation system which run on that architecture. Our future work includes
finding the optimal design trade-off in the co-designed x86 virtual. We will
implement the x86 features that are critical to the performance and easy to be
supported in hardware, for example the supports for the floating point stack, while
implementing the complicated and unusual features in software.

Acknowledgement

This work is under the support of the National Basic Research Program, also called
973 program in China (grant number: 2005CB321600) and Innovative Program of
ICT (grant number: 20056610).

References

1. Weiwu Hu, Fuxin Zhang, Zusong Li. Microarchitecture of the Godson-2 processor. Journal
of Computer Science and Technology, 3 (2005) 243-249.

2. David Patterson, John Hennessy. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc. 1996.

3. Michael D. Goddard, Scott A. White. Floating point stack and exchange instruction. US
Patent Number: 5,857,089. Jan.5, 1999

4. David W. Clift, James M. Arnold, Robert. P. Colwell, Andrew F. Glew. Floating point
register alias table fxch and retirement floating point register array. US Patent Number:
5,499,352. Mar.12, 1996

5. Fuxin Zhang. Performance analysis and optimization of microprocessors. PHD Thesis,
Institute of Computing Technology, Chinese Academy of Sciences. (6) 2005

6. Feng Tang. Research on dynamic binary translation and optimization. PHD Thesis, Institute
of Computing Technology, Chinese Academy of Sciences. (6) 2006

7. Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun Wang,
Yigai Zemach. IA-32 execution layer: a two-phase dynamic translator designed to support
IA-32 applications on Itanium®-based systems. MICRO-2003 (11) 2003

8. Dehnert. J.C., Grant. B.K., Banning. J.P, Johnson, R.; Kistler. T., Klaiber. A., Mattson. J.,
The transmeta code morphing software: using speculation, recovery, and adaptive
retranslation toaddress real-life challenges. CGO-2003 (3) 2003

9. Bochs: The Open Source IA-32 Emulation Project . http://bochs.sourceforge.net/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 9
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 9
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 10.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 9
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 10.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

