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Abstract. The stack-based floating point unit (FPU) in the x86 architecture 
limits its floating point (FP) performance. The flat register file can improve FP 
performance but affect x86 compatibility. This paper presents an optimized 
two-phase floating point register renaming scheme used in implementing an 
x86-compliant processor. The two-phase renaming scheme eliminates the 
implicit dependencies between the consecutive FP instructions and redundant 
operations. As two applications of the method, the techniques used in the 
second phase of the scheme can eliminate redundant loads and reduce the 
mis-speculation ratio of the load-store queue. Moreover, the performance of a 
binary translation system that translates instructions in x86 to MIPS-like ISA 
can also be boosted by adding the related architectural supports in this 
optimized scheme to the architecture.  

1. Introduction 

X86 is the most popular ISA and has become the de facto standard in microprocessor 
industry. However, the stack-based floating point ISA has long been considered as a 
weakness of the x86 in compare with the competing RISC ISAs. The addressing of FP 
stack register is related to a Top-Of-Stack (TOS) pointer. Every x86 FP instruction 
has implicit effects on the status of the floating point stack, including the TOS pointer 
and incurs implicit dependencies between consecutive floating point instructions. 
Furthermore, the stack-based architecture requires one of the operands of an FP 
instruction comes from the top of the stack, so some transfer or swap operations are 
needed before real computations.  

The AMD x86 64-bit processor attacks the above problems by using a flat register 
file. It uses SSE2 to replace the stack-based ISA with a choice of either IEEE 32-bit 
or 64-bit floating point computing precision. However, even the 64-bit mode can not 
obtain the totally same results as the original double extended FP computing 
precision. Another fact is that a lot of legacy libraries are written in highly optimized 
floating point assembly; rewriting of these libraries takes a long time. Therefore, the 



replacement of the stack-based ISA is not easy. We should seek for novel techniques 
to bridge the FP performance gap between x86 and RISC architecture.  

This paper first presents a comprehensive and solid methodology of implementing 
x86-compliant processor based on a generic RISC superscalar core. The techniques to 
handle x86-specific features such as, complex instruction decoding, Self Modified 
Code (SMC), non-aligned memory access are outlined. After giving a motivating 
example, we emphasize on the key elements of our methodology, 2-phase register 
renaming scheme for attacking the stack-based FP operations. The first phase of the 
renaming scheme eliminates the implicit dependencies imposed to the consecutive FP 
instructions by maintaining speculative stack-related information in the instruction 
decode module. The second phase eliminates almost all of the redundant operations 
by value “short-circuiting” in rename table, which actually achieves the effect of a flat 
register file. Critical issues in processor design such as branch misprediction and 
exception handling are carefully considered.  

The scheme has two applications. First it can be used to reduce the mis-speculation 
ratio of loads in implementing POP instructions in x86 ISA. The results of stores may 
be directly “short-circuited” to the loads in the renaming module in some cases, so 
that the redundant loads are eliminated and will not incur mis-speculations in the 
load-store queue. Secondly, the generic RISC core that originally supports x86 ISA 
by binary translation can be augmented with the 2-phase renaming scheme, so that the 
performance of the translated code is boosted. The codes generated by the original 
binary translation system have a poor performance for FP programs due to the 
significant semantic gap between the RISC and x86 FP ISA.   

The rest of the paper is organized as follows. The design methodology of the 
prototype processor architecture is presented in section 2. Section 3 provides an 
example which motivates our optimized scheme. Details about the proposed scheme 
are presented in section 4. Section 5 briefly summarizes the two applications of the 
scheme. Section 6 describes the simulation environment and methodology. The 
simulation results are presented in section 7. The related work is outlined in section 8. 
We conclude the paper in section 9. 

2.Overview of the GodsonX architecture 

Fig. 1 shows the architecture of the proposed prototype x86 processor GodsonX 
which is built based on the core of Godson-2C[1] core, a typical RISC 4-issue 
out-of-order superscalar. The architectural supports for x86 architecture are presented 
as shaded blocks.  

The front end of x86 processor is much more complex than the RISC processor. It 
is organized in 5 pipeline stages. The first stage generates instruction addresses. The 
second stage is composed of five modules providing the content of instructions, 
pre-decode information and performing branch prediction. The third stage, decode-0, 
consists of four sub-modules and is responsible for instruction alignment and queue 
management. The decode-1 module reads the aligned x86 instructions from the first 
instruction register (IR1 in the figure), translates them into the “RISC style” 
intermediate instructions and some micro-ops, and puts them in the second instruction  



 
Fig. 1. GodsonX architecture 

register (IR2 in the figure). The decode-2 module generates sequences of micro-ops 
and put the sequences in the micro-op queue (uop in the figure). The methods that 
decode-2 uses to generate micro-op sequences include: short micro-op sequence 
Decoder (SD), Long micro-op sequence Decoder (LD), Memory access Mode 
decoder (MD) and micro-op Rom (urom). The uop queue acts as a buffer between 
decode-2 and the register rename module inside the RISC core, enabling stable 
instruction issue from the front end.  

The architectural supports to the FP stack are distributed. These modules work 
cooperatively to guarantee the correct stack status while ensuring efficient execution 
of floating point instruction. The decode-1 module maintains a local copy of TOS and 
Tag, and has a table storing the x86 FP instruction information. Each micro-op should 
carry the TOS after dispatched from the register renaming stage. The reorder queue 
(ROQ) handles FP exceptions specified in x86 ISA. The branch queue (BRQ) keeps 
the local TOS and Tag of the branch instruction for misprediction handling. The 
floating point data type (Tag) of the result value is computed in FALU1/2, and passed 
to ROQ in write back stage. When a floating point instruction commits, ROQ writes 
the TOS and Tag into the architectural FP status and tag word. Under exceptions, the 
decode-1 module recovers the TOS and Tag from these registers. 

We tried to handle some burdensome x86 ISA features, such as Self Modified 
Code (SMC) and non-aligned memory accesses, etc. by architectural modifications or 
supports. The method to handle SMC is in the granularity of cache line, so it has the 
advantage over the method adopted by Intel, which detects and handles the event in 
the granularity of page. Specifically, we added a Simplified Victim Cache (SVIC) to 
the decode module. As a store writes back, we use the address to look up the ICache 
and SVIC, if an entry is found, then an SMC occurs, then the pipeline need to be 
flushed. Similarly, the miss queue is also looked up as a store writes back. When the 
ICache misses, it is also needed to look up the data in the DCache, while sending the 



request to miss queue, trying to find the data in memory. Similarly, it is also 
necessary to look up the data in the store queue when ICache misses, since store 
queue serves as a buffer between pipeline and DCache. In our processor, the L2 and 
L1 cache are exclusive. If a missed L1 access hits a dirty line in L2 cache, L2 cache 
should also write the line back to memory, otherwise the data will be lost. As an 
optimization, we modified the former memory access architecture in our processor 
and proposed an efficient way to execute non-aligned memory accesses in x86. In the 
new architecture, the LSQ(LD/ST Queue) is placed in the position before the DCache 
and DTLB accesses. In this way, the latency in cache tag compare stage is reduced, 
since the load and store dependencies are only needed to be checked when the 
loads/stores are issued from the LSQ. We also leverage this architecture to execute 
non-aligned memory access efficiently, this kind of operations are split into two 
operations after it goes through the LSQ, and the first access can be interleaved with 
the address calculation of the second one. The 80-bit memory accesses in FP 
instructions can be handled in a similar way. Moreover, we found that segment 
register is usually not changed as x86 program executes, so we can speculate on its 
value, which makes the address calculation simpler. The performance of memory 
access module can also be optimized by making the common operations run faster, 
which reduces the hardware cost. We found that in 2 issue memory access pipeline, 
one-port TLB is enough in the common case. The MDP in register renaming module 
is a simple Memory Distance Predictor, which can reduce the possibility that the 
pipeline flush due to load/store conflicts. 

3. Motivating Example 

A floating point computation example is presented in this section, showing the 
advantages of the optimized scheme. Consider the computation: atan((a+b)/(a*c)), a 
possible x86 instruction sequence and two possible corresponding micro-op 
sequences are given below. 
X86 instructions naïve micro-op sequence optimized sequence 
FADD  ST(1); 
FXCH ST(4);  
FMULP ST(1),ST(0); 
FLD  ST(3); 
FPATAN; 

 

fadd fr(5), fr(5), fr(6) 
fmov fr(9), fr(5) 
fmov fr(5), fr(1) 
fmov fr(1), fr(9) 
fmul fr(6), fr(6),fr(5) 
fmov fr(5), fr(1) 
fpatan fr(5), fr(5), fr(6) 

fadd fr(5), fr(5), fr(6) 
fxch fr(5), fr(1) 
fmul fr(6), fr(6), fr(5) 
fmov fr(5), fr(1) 
fpatan fr(5), fr(5), fr(6) 

 Fig. 2 shows the change of FP stack status when the instructions are executed. 
We assume the left-most the initial state, where TOS is 5. The FXCH instruction 
swaps the content of ST(4) and ST(0). The suffix “P” in the multiplication instruction 
implies that a “pop” operation is required. The “pop” increases the TOS and empties 
the former top element. The last instruction computes the arc-tangent function of 
(ST(0)/ST(1)), the source operands position are fixed, so there is no need to specify 
them in instruction. It reflects a feature of stack-based architecture. Also, the 
FPATAN instruction includes a “pop” operation. 



 
Fig. 2. Stack operations of the x86 instructions 

We use four FP register number address spaces. FP registers used in FP 
instructions are called relative FP stack registers (ST(i), i∈[0,7]), the relative FP 
registers are mapped to absolute FP stack registers (st(i), i∈[0,7]) by adding ST(i) 
to TOS (module 8). The FP registers used in micro-op are FP logical registers (fr(i), i
∈[0,15]). The FP registers after renaming in the RISC core are FP physical registers 
(pr(i), i∈[0,63]). st(0)-st(7) are directly mapped to fr(0)-fr(7). Temporary registers 
are used to hold intermediate results. The micro-op sequences can use up to 8 
temporary FP registers which are fr(8)-fr(15). In the naïve sequence, we use three 
transfer operations (“fmov”) to implement FXCH. In the optimized scheme, a 
dedicated swap operation (“fxch”) is used. 

 Table 1 and table 2 show the execution and register mapping processes of the two 
micro-op sequences. We find that the number of micro-ops that would go into the 
issue queue is 7 in the naïve sequence and 3 in the optimized sequence; while the 
numbers of physical registers consumed are 10 and 6, respectively. Both the 
micro-ops and the mapped physical registers are reduced. Due to the nature of 
stack-based architecture, there are inherently a large amount of FXCH instructions in 
x86 FP program. Reducing the number of this kind of operations can directly reduce 
the execution time of the program. Moreover, it will alleviate the burden to the 
physical register file and issue queue, which makes other operations execute faster as 
well. 

In the next section, we will present our novel 2-phase renaming scheme. The first 
phase of renaming releases the serial requirement in decoding x86 FP instructions via 
speculative local copy of certain floating point information in decode-1 module. The 
second phase adopts an optimized RAM-based approach, which can support the 
optimization. 

Table 1. Register mapping and execution of the naive micro-op sequence 

Map-Table orig. inst renamed inst mapping executed ops 
fr1->pr1,fr5->pr5, 
fr6->pr6 

fadd 
fr5,fr5,fr6 

fmul pr9,pr5,pr6 fr5->pr9 (pr5+pr6)->pr9 

fr1->pr1,fr5->pr9, 
fr6->pr6 

fmov fr9,fr5, 
fmov fr5,fr1 
fmov fr1,fr9 

fmov pr10,pr9 
fmov pr11,pr1 
fmov pr12, pr10 

fr9->pr10 
fr5->pr11 
fr1->pr12 

pr9->pr10 
pr1->pr11 
pr10->pr12 

fr1->pr12, fr5->pr11, 
fr9->pr10, fr6->pr6 
 

fmul 
fr6,fr6,fr5 
 

fmul pr13, pr6, 
pr11 

fr6->pr13 (pr11*pr6)->pr13 

fr1->pr12, fr5->pr11, 
fr9->pr10, fr6->pr13 

fmov fr5,fr1 fmov pr14, pr12 fr5->pr14 pr12->pr14 

fr1->pr12, fr5->pr14, 
fr9->pr10, fr6->pr13 

fpatan 
fr5, fr5, fr6 

fpatan  
pr15, pr14, pr13 

fr5->pr15 atan(pr13/pr14) 
->pr15 



Table 2. Register mapping and execution of the optimized micro-op sequence 

Map-Table orig. inst renamed inst mapping executed ops 
fr1->pr1,fr5->pr5, 
fr6->pr6 

fadd fr5,fr5,fr6 fmul pr9,pr5,pr6 fr5->pr9 (pr5+pr6)->pr9 

fr1->pr1,fr5->pr9, 
fr6->pr6 

fxch fr5, fr1 eliminated fr5->pr1 
fr1->pr9 

Swap the FP physical 
register that fr5 and 
fr1 mapped  

fr1->pr9, fr5->pr1, 
fr6->pr6 
 

fmul 
fr6,fr6,fr5 
 

fmul pr10, pr6, pr1 fr6->pr10 (pr1*pr6)->pr10 

fr1->pr9, fr5->pr1, 
fr6->pr10 

fmov fr5,fr1 eliminated fr5->pr9 Make fr5 map to the 
physical register that 
fr1 mapped to, it is 
pr9 

fr1->pr9, fr5->pr9, 
fr6->pr10 

fpatan 
fr5, fr5, fr6 

fpatan  
pr11, pr9, pr10 

fr5->pr11 atan(pr10/pr9) 
->pr11 

4. Optimized 2-phase register renaming scheme 

4.1 Mapping from stack registers to logical registers 

In the first phase mapping, the FP stack registers are mapped to FP logical registers. 
We adopt a speculative decoding technique in this process. The decode-1 module 
maintains a local copy of partial TAG and TOS. The TAG is partial since it just 
indicates if a FP register is empty. The decode stage determines the absolute FP 
register based on the local TOS and update these information after each FP instruction 
is decoded, according to the specifications of each FP instruction. In this way, the 
decoding of FP instructions can be pipelined, since the decode module does not have 
to wait for the committed TOP and TAG information. Here we should note that the 
effects of each FP instruction on the stack are totally predictable.  

If no exceptions, the local TOS and Tag is synchronized with the architectural TOS 
and Tag in the FP status and tag word when the instruction commits. In case of 
exceptions, the changes to the local TOS and Tag at the decode stage have to be 
recoverd to the architectural state. We explain the branch misprediction case by an 
example.. Fig. 3(a) presents a branch misprediction scenario. The nodes 1 and 2 
represent the committed instructions, the nodes 3 and 4 represent the instructions 
executed in the correct path but not committed, node 4 is the branch instruction, and 
nodes 5-7 are the instructions in the wrong path, executed and need to be cancelled. 
From this scenario, if the TOS and Tag are recovered from the FP status word and the 
Tag word, the decode stage will hold TOS and Tag information of the last instruction 
committed before the branch, that is node 2. But this is incorrect, since what we need 
is the TOS and Tag after the execution of the branch instruction, the node 4. 
Therefore we need to keep the TOS and Tag of each branch instruction in the BRQ 
shown in Fig. 1. When a branch misprediction occurs, the decode stage recover the 
TOS and Tag from BRQ. 

The partial TAG information can be used in the detection of stack 
overflow/underflow. An FP stack underflow occurs when an instruction references an 
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Fig. 3. (a) branch misprediction scenario. (b) An example: detection of FP “stack underflow” 

empty FP stack register, a stack overflow occurs when an instruction loads data into a 
non-empty FP stack register. Fig. 3(b) shows an example of detecting FP stack 
underflow conditions. The partial TAG is the 8-bit vector at the bottom; “0” indicates 
the related position in FP stack is empty, “1” means the position is non-empty.   

The Floating Point Instruction Table (FPIT) is used as an effective and low cost 
way to maintain the information of each FP instruction in decode module. After 
analyzing the bit codes of each instruction, we found certain group of instructions has 
similar bit codes and similar effects to the stack. We can represent information for 
these FP instructions by just one entry in FPIT. This technique makes the table 
smaller. In each entry, we store the effects to the stack. More details about this table 
are out of the scope of the paper. 

4.2 Optimized register mapping in the RISC core 

There are two ways to implement the register renaming, the RAM-based design and 
CAM-based design, they use separate or merged architectural and rename register 
files. The former design of Godson-2C processor adopts the CAM approach, which 
can not support the optimization in the paper. We propose a new RAM-based register 
renaming design. This design allows one physical register to be mapped to more than 
one logical registers. Fig. 4 gives the outline of this architecture. 

We use three mapping tables to maintain the relationship between FP logical 
registers and physical registers. The Floating point Logical Register Mapping Table 
(FLRMT) is used to rename logical registers to physical registers. It has 16 entries 
representing 16 floating point logical registers. The field “pname” indicates which 
physical register the logical register is mapped to. Each FLRMT entry contains 8 
lastvalid items, corresponding to 8 BRQ entries. The lastvalid(i) keeps the mapped 
physical register number when the branch instruction in BRQ(i) is mapped. The 
Floating point Physical Register Mapping Table (FPRMT) merely maintains the state 
of each physical register. It has 64 entries corresponding to 64 physical registers. 
There three fields in each entry. The state records the state of the physical register, 
brqid is used in branch misprediction to recover the correct register mapping, and 
counter indicates how many logical registers are mapped to this physical register. 
When the register renaming stage finds an entering instruction an “fmov”, it directly 
maps the destination register to the physical register of the source register, and 
increases the counter for the physical register. When “fxch” is encountered, the source 



 
Fig. 4. optimized register renaming inside RISC core 

and destination registers are simply swapped. When an instruction committed, the 
counter for the destination physical register is decreased. We need four bits for the 
counter field, since at most 16 logical registers can be mapped into a physical register. 
Note that the change of mapping between logical and physical registers at the register 
renaming stage by fmov or FXCH is speculative; the instructions can be canceled 
later because of exception. The Floating point Architectural Mapping Table 
(FARMT) records the committed physical register which the logical register is 
mapped to, it is used in exception recovery. This table has 16 entries corresponding to 
16 logical registers. Each entry just records the physical register that the logical 
register mapped to. The table is updated when an instruction is committed. When an 
exception is encountered, the renaming stage can recover the mapping relationship 
from FARMT. This optimized architecture simplifies lookup logic compared with the 
CAM-based implementation and is more scalable.  

TAG update should also be considered in the optimization. When an instruction 
committed, the tag for the destination register should be updated, reflecting the latest 
status. In our design, the tag is computed in FALU, but the eliminated “fxch” and 
“fmov” will not enter FALU. This is not a problem for “fxch”, since its two operands 
are both architectural visible registers, so the only thing to do as an instruction 
commits is to swap the tags for the two operands in the FP tag word. For “fmov”, it is 
more difficult because the source operand may be a temporary register. To make the 
design simple, the optimization is not applied to the special case. As the statistics data 
shows, the special case is rare. 

5. Applications of the renaming scheme 

The proposed scheme has two applications. First, it can be used as the supports for the 
Godson-2C processor that implements MIPS-like ISA and runs application-level 
binary translator to support x86 applications. The binary translator that we conducted 
the experiments is Digital Bridge[6]. It works in a Godson based LINUX server, and 
translates the elf file of x86 ISA to Godson ISA (MIPS-like). Although the translator 
works well for fix point programs the performance of floating point applications 
suffers. It is mainly due to the remarkable ISA semantic difference between x86 and 
general propose RISC in floating point specification. The existing method on binary 
translation is not efficient enough to bridge such a gap, architectural supports are 
needed to narrow the gap. Without architectural supports, the Bridge translator use 



static FP registers in Godson processor to emulate FP stack operations. When loading 
data into the FP stack register, for example, ST(2), we must dynamically determine 
the corresponding absolute register and put the value in fr(2). The process will incur a 
lot of swap operations in the target Godson code. This approach still needs the help of 
memory. The valid values on the stack should be loaded from and stored into memory 
at the beginning and the end of each basic block. Finally, this approach assumes that 
the TOS is the same and TAGs are all valid at entry of each basic block. Only under 
this assumption, ST(i) can always correspond to fr(i), regardless of the preceding path 
from which the code arrives the entry. But a large amount of extra code must be 
added at the head of the translated code for each block to judge if the above 
speculation is held. From the experiment results, the condition is satisfied almost all 
the time. It is obviously a waste to execute a large segment of extra code for rare 
conditions. We add our architectural support for FP stack to Godson-2C processor 
without x86 features. With these supports, we can directly use the relative FP registers 
in the translated code, making the burden of maintaining status of FP stack to 
hardware. 

As the second application of the method, it can also used to eliminate redundant 
loads. An impediment to Godson-X performance is the high miss rate of load 
speculation. After analyzing the program execution behavior, we found that the 
problem came from the x86 PUSH and POP instructions for parameter passing in 
function calls. These two instructions are mapped to store and load micro-ops. In a 
function call, the store and load come in pair and close to each other. Godson-X 
always speculates on the value of the load before the store commits. Therefore when 
the store commits, mis-speculation occurs. We added a 4-entry table to the register 
renaming module to forward the store value to the loads. The table maintains the 
source register numbers and memory addressing information of the 4 most recent 
store instructions. If a load instruction’s memory address matches to one of the 
entries, it can be eliminated by modifying the register mapping relationship to directly 
get the stored value. Moreover, we are trying to extend this technique to eliminate 
redundancy in control flow with some hardware support. It is out of the scope of this 
paper.  

6. Experimental Infrastructure  

We have developed a cycle accurate full-system simulator for x86-compliants. Unlike 
the Simplescalar-based performance simulators, which decouple the execution and 
timing logic and can only provide an estimation of the performance, our simulator 
models the exact signals and timing except inside the ALU/FALU. This makes the 
result more accurate.  Table 3 shows the detailed configuration of the simulator. For 
the latency of FP operations, we make following assumptions on latency: absolute, 
negation, comparison and branch take two cycles; addition, subtraction and 
conversion take three cycles; multiplication takes four cycles; division and square root 
take 4 to 16 cycles to complete; and transcendental functions take 60 cycles to 
complete. The real computation is carried out by a modified library of standard FP 
software implementation, the main modifications are FP exception handling. 



Table 3. Configuration of GodsonX processor 

decode width  at most 2 x86 instructions each cycle 
functional units 2 fix point ALU, 2 floating point ALU, 1 memory 
ROQ 32 entries 
BRQ  8 entries 
fix issue queue 16 entries 
float issue queue 16 entries 
branch predictor Gshare: 9-bit ghr, 4096-entry pht, 128-entry BTB,direct mapped 
L1-ICACHE 64KB 4-way set associative 
L1-DCACHE  64KB 4-way set associative 
memory access latency 50 cycles for the first sub block, 2 cycles for consecutive sub 

blocks 
We use X86 emulator Bochs[9], which can boot LINUX and Window XP, as a 

reference in validating our design. Every time an instruction is committed, the whole 
architectural state is compared with Bochs. Due to this method, we debugged and 
validated our design. Finally, our simulator can boot the LINUX and Window XP. 

SPEC CPU2000 is used as our benchmark. First, we find the representative region 
of each program by a SimPoint-like performance simulator for GodsonX processor, 
which is built from the counterpart for Godson-2C processor[5]. We fast-forward each 
program to its representative region and run 1 billion cycles using the cycle-accurate 
simulator to get precise results. 

7. Simulation results and Discussion 

7.1 Performance and characteristics of x86 programs 

Fig. 5(a) presents the performance comparison between our processor and the 2.4 
GHz Intel Celeron processor. The IPC of the latter is obtained as follows. We first run 
each program in Bochs and record the instruction count, them we execute it in a real 
Celeron machine, record the execution time. We compute the IPC of each program 
and then compare it with the IPC of representative region in GodsonX. For some 
programs such as wupwise, swim, facerec and swim, performance of GodsonX is 
much better than that of Celeron, for programs like applu, equake, ammp and apsi, 
performances are similar. However, for some programs, especially sixtrack, 
GodsonX’s performance is worse. Fig. 5(b) shows the latency distribution of 
micro-ops in GodsonX, the height of each bar represents the absolute number of 
cycles from map to commit. We can see that most of the cycles are due to register 
mapping or waiting for commit. This indicates that a large physical register file or 
reorder buffer is needed. Fig. 5(c) shows the cycle distribution with respect to the 
number of micro-ops committed in a cycle. For every program more than one 
micro-op is committed each cycle on average, especially for ammp, in most of the 
time four micro-ops are committed each cycle. It indicates that the efficiency of 
GodsonX is quite good. Fig. 5(d) presents the average number of micro-ops per x86 
instruction, which indicates the quality of our micro-op mapping. On average about 2 
are needed to implement an x86 instruction. 
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Fig. 5. Execution results of x86 program on our processor 
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Fig. 6. Comparisons of register renaming 
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Fig. 7. IPC increase and the ratio of eliminated operations 
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Fig. 8. Effects on the binary translation system and the ratio of eliminated mis-speculation 

7.2 Effects of the optimized scheme 

Fig. 6 shows the effect of the optimization in mitigating the burden to register 
renaming. The information is indicated by the percentage of total execution time 
during which certain number of renaming table entries are occupied. We find that 
after optimization, the curves shift left. This means that fewer entries are used in 
certain percentage of time. Fig. 7(a) shows the improvement to IPC. We can see that 
both apsi and lucas get a big IPC increase, as high as 30%. This observation is 
consistent with the optimization effect on usage of the renaming table shown in Fig.6. 
Fig. 7(b) shows the number of “fmov” before and after the optimization. The 
elimination of “fmov” comes from two sources. First, the “fmov” for FXCH are 
completely eliminated by simply swapping the source and destination registers 
mappings. Secondly, a large portion of other “fmov” resulted from FLD or FST are 
eliminated by the register renaming module. We can see that more than 10% of 
micro-ops are removed on average. In Figure 8, we show the impacts of the 
application of technique. From (a) we can see the performance of the binary 
translation system boosts significantly; this is due to the augmented architecture on 
which the code generated by the binary translation executes. In this architecture, 
certain features of the floating point stack are incorporated, so that the binary 
translation system can easily generate simple and efficient code for the x86 FP 
application. In (b), the ratio of the eliminated load mis-speculations are presented, the 
mis-speculation is frequently in SPEC2000 Integer programs, so we show the ratios 
for several integer programs. 

7.3 Hardware costs comparison 

This section we show two alternative implementations of the register renaming 
module. One is the design proposed in this paper, the other is the register renaming 
module in Godson-2C. The results in Table 4 are derived from Synopsys Design 
Compiler with 0.13um standard cell library for TSMC. We can see from the 
comparison that the critical path of the optimized scheme is slightly longer than the  



Table 4. Hardware cost comparison 

 Lat. (ns) Area(um2) 
GodsonX 1.25 616841.937500
Godson-2C  1.23 981161.687500
design of Godson-2C, but the area comsumed by the GodsonX register renaming 
module is greatly reduced. The main reason to the decrease is in the Godson-2C 
design, a large combinational logic is used to generate a table that maps the logical 
registers to physical registers, this part of logic consumes a lot of area. Although the 
proposed scheme has a longer critical path than that of Godson-2C, the RAM-based 
design apporach has better scalability. When the number of physical registers 
increases, the proposed scheme will show more advantages over the former design. 

8. Related work 

The implementation of FP stack is a critical issue in x86-compliant processor design. 
Some mechanisms have been patented by Intel[4] and AMD[3], but they are different 
from the scheme proposed in this paper. The main distinctions are that they normally 
adopt multiple tables to hold the stack related information, and the structures to hold 
the information are distributed in the processor. The synchronizations under 
exceptions and branch mis-predictions are much more complicated. The modification 
to the RISC core in our scheme is trivial and the handling of exceptions or 
mis-predictions is easy to understand and implement. More important is that we 
present an applicable methodology of implementing the FP stack based on a generic 
RISC core efficiently. 

The elimination of FXCH has been used in some x86 processor, but it can only be 
done when FXCH comes with certain types of instructions, in those conditions, it can 
be combined with the surrounding instructions and eliminated. Both Intel and AMD 
employ a dedicated unit to execute FXCH instruction. Our scheme is more general 
and has lower cost. We only incorporate some simple functions in register renaming 
stage to detect the optimization opportunities. As in our scheme, not all FXCH in Intel 
or AMD processors can be eliminated. For example, under stack error (stack overflow 
or underflow), AMD processor will generate 5 micro-ops for the FXCH instruction. 
Moreover, from P4 processors this operation will have 3-cycle execution time again. 
Due to the elegant style of eliminating such operations in our scheme, the 
optimization will exist continually in our processor.  

Our attempt is the first effort to implement a full x86-compliant processor based on 
a typical RISC core. The methodology presented in this paper can be applied to build 
processor in different ISAs. We also provide some x86 program characteristics and 
behaviors on our processor. IA-32 execution layer[7] and transmeta morphing 
software[8] are two efforts to translate x86 programs to other ISAs. Software based 
approaches are adopted in these systems, and the underlying architectures are VLIW, 
while our methodology is based on hardware architectural support to an existing and 
more general superscalar architecture. It is also the first work to investigate the impact 
of architectural support to binary translation.  



9. Conclusion 

This paper presents an optimized floating point register renaming scheme for stack 
based operations used in building an x86-compliant prototype processor. We 
compared the hardware cost of two register renaming designs; the proposed scheme 
has a slightly longer critical path but greatly reduced area. We find a large amount of 
swap and data transfer instructions in FP programs, and most of them can be 
eliminated by our proposed scheme. The IPC improvements due to the optimization 
are as high as 30% for some programs, and near 10% on average. Similar techniques 
in the scheme can also be extended to eliminate redundant loads and used as the 
architectural supports for RISC superscalar core to boost the performance of the 
binary translation system which run on that architecture. Our future work includes 
finding the optimal design trade-off in the co-designed x86 virtual. We will 
implement the x86 features that are critical to the performance and easy to be 
supported in hardware, for example the supports for the floating point stack, while 
implementing the complicated and unusual features in software.  
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